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 1. INTRODUCTION

At the moment, it is very difficult to ensure privacy when managing tokenized assets 
(especially in the conditions of openness and transparency of accounting systems 
in which these assets are tokenized). Privacy approaches have long been used in 
cryptocurrencies but have not been applied in a regulated environment yet, mostly 
due to the fact that regulators require the tracking of financial flows (at least inbound 
and outbound).

For this reason, there can be a protocol that allows transparency of the deposit and 
withdrawal processes, but with privacy in the middle (transfers). This protocol turns 
virtually any asset into a form of digital cache. You deposit the tokenized asset (this 
process is open and subject to regulation) and receive a corresponding hidden 
ownership obligation. When you withdraw, you prove that such an obligation exists, 
it is valid, and you own it (the process of converting obligations into an asset is also 
transparent and amenable to regulation). But everything that happens between these 
two actions is hidden. You can pay with obligations to others, exchange obligations 
with other ones, etc. At the same time:

FIGURE 1 - OFFSHIFT PROTOCOL PROPERTIES

there is confidence that new obligations do not appear out of thin air; 
the actual amounts are available only to the involved counterparties.

1.
2.
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Transforming the initial task to the polynomial problem. 1.

This paper describes the  structure of the Offshift protocol, which implements the 
functionality of confidential transactions with ERC-20 tokens. The core of the protocol 
is zero knowledge proofs. Bulletproofs are a reference implementation (we’ll describe 
why later).

Also, a feature of the protocol is getting the price of an asset when converting it 
(depositing and withdrawing assets) through oracles (integration with an oracle 
solution). We will consider in more detail the principles of operation in section 7.

The idea for the creation of a Zero-Knowledge Succinct Non-Interactive Argument of 
Knowledge was first described in 1985 in the article “The Knowledge Complexity of 
Interactive Proof-Systems” [1, 2].

When were zk-SNARKs first used? It was thought at the time that Bitcoin transactions 
were quite confidential and untraceable, because they were not associated with users’ 
IDs.  As it turned out, re-identifications in incomplete datasets using generative models 
are possible. After discovering this fact, developers began to work on cryptocurrencies 
that have a  reasonable level of confidentiality of transactions. This is how Zcash was 
born. The main goal of its creation is to make all transactions completely anonymous 
[3, 4]. For this purpose zk-SNARKs were used.

Zk-SNARKs are used in:

Zk-SNARKs have the following components [7]:

 2. WHY BULLETPROOFS

2.1 Three major ZKP techniques

2.1.1 zk-SNARKs

Cryptocurrencies [5];
Sidechains [6];
Rollups;
Identity infrastructures.

-
-
-
-
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UTXO-based cryptocurrencies.

-
-
-

-
-
-

The first work about STARKs was created in 1990, but practical applications did not 
yet exist [8]. That was until 2018, when Eli Ben-Sasson (a professor at the Technion-
Israel Institute of Technology who has been researching zero-knowledge proofs for 
approximately 15 years), Iddo Bentov, Yinon Horesh, and Michael Riabzev presented 
their work “Scalable, transparent, and post-quantum secure computational integrity” 
[9, 10]. In this paper, a case was also described in which police prove that the offender 
database doesn’t contain DNA of a presidential candidate without revealing any 
information about the database or the DNA.

Projects that use zk-STARKs:

The Bulletproofs whitepaper was published in late 2017 by Jonathan Bootle from 
University College London, England, and by Benedikt Bunz from Stanford University, 
United States [14]. It was originally designed to be implemented on the Bitcoin 
blockchain. All existing ZKP implementations at the time required a trusted setup, and 
their worst aspect is that they must be initiated by some trusted authority. As is well 
known, the security properties of the Bitcoin system don’t apply to that authority. So 
the bulletproofs were designed to solve this problem [14].

Now Bulletproofs are being used in:

Main components of STARKs construction [12]:

2.1.2 zk-STARKs

2.1.3 Bulletproofs

Decentralized exchanges like OpenZKP [11];
Rollups;
Identity management.

2.
3.
4.

Simplifying the whole task to check equality: t(s)h(s) = w(s)v(s).
Homomorphic encryption E(t(s)), E(h(s)), E(w(s)), E(v(s)).
Zero knowledge - operating with hidden values.

-

Homomorphic operations;
Secure multiparty computing (MPC);
Hash functions for quantum resistance [12, 13].
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At the heart of the Bulletproofs:

Pedersen commitment;
Improved inner product proof.

-
-

2.2 High level approaches comparison

You can find the following diagram that represents the difference between approaches 
to zero-knowledge proofs [15, 16].

Based on the considered comparison, it was decided to use Bulletproofs as zero 
knowledge proofs for the Offshift protocol.
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There are several successful applications of Bulletproofs in UTXO-based accounting 
systems. The most striking examples are Monero and Mimblewimble.

In 2018, Bulletproofs began to be used in Monero as a replacement for Borromean’s 
ring signatures. The main reason for this was the size of the range proofs (bulletproofs 
significantly reduced this size), as well as compactness - the ability to place the proof 
not for a separate transaction output but for all of the outputs that are contained within 
the transaction (in this case, the proof will be larger than a single one, but much less 
than the total size of all outputs) [17].

On July 19th, 2016, a paper titled “MIMBLEWIMBLE” was published. It was a protocol 
for accounting system construction with a high level of user privacy and system 
scalability [18]. A little later, Andrew Poelstra, one of the most famous people in the 
Bitcoin community, published a more detailed document, which described the details 
and technical features of the protocol [18].

The UTXO model makes it harder to link transactions, whereas the account model 
provides better fungibility [19].

Changing the address for each input/output payment is making the transaction history 
harder in the linkability context (UTXO). A newly generated address doesn’t have a 
known owner and requires chain analysis to be linked to a single user (which sometimes 
is potentially impossible) [20].

3. UTXO-BASED
IMPLEMENTATIONS

4. ACCOUNT-BASED
MODEL FEATURES
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irreversibility (the impossibility of obtaining a secret value having only a 
commitment);
completeness (having a commitment, the verifier can check the knowledge with 
a high level of certainty).

In the account-based model, all transactions are associated with a particular account. 
But after funds come to the account, it’s impossible to define which coins will be spent 
next time.

This, in turn, leads to a model where it makes sense to transfer part of the transactions 
to the UTXO model (UTXOs will be tied to one account but hidden), while the output 
of these UTXOs to the general account balance allows using the built-in account-based 
model mixer.

To understand how bulletproofs work, we will first look at the basic elements of the 
mathematics that are used: EC Pedersen commitment, range proofs and inner product 
proof [21 - 24].

5. HOW BULLETPROOFS WORK

5.1 EC Pedersen commitment

Cryptographic commitments are what all zero-knowledge proofs are based on.
© Yoda

Cryptographic commitments are used for setting some value without revealing it. After 
a certain period of time, you can publish the knowledge and prove that you had it 
earlier.

© Obi-Wan Kenobi

5.1.1 Basis

Pedersen commitment can provide:

In a Pedersen commitment scheme - irreversibility and completeness are ensured by 
the complexity of the discrete logarithm problem.

-

-
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-

preventing the situation when the commitments for the same values will be equal;
preventing brute force attacks if the committed value is not large (like the amount 
of the transfer);

-
-

C - commitment, it is just a point on the EC;
a - committed (integer) value, for which zero-knowledge has to be completed (has to 
be hidden);
r - random (integer) value, is used for:

Note 2. To prevent this attack and prove "not knowing" q methods, NUMS "nothing-up-
my-sleeve" is used.

Note 1. C = r*q*G + a*G = (rq+a)*G. If the attacker knows q, they can provide proof with 
a1  ≠ a and r1 ≠ r in such a way that C = (r1q+a1)G.

Note 3. Pedersen commitments support homomorphism. Homomorphism is an 
important property of this approach since it allows further calculations over the hidden 
values:

G - the base point (EC generator);
H - another EC point:

the discrete logarithm of H no one has to know (H = q*G). Attackers who know 
q can produce valid proofs without knowledge of a.

Algorithm 1. (Pedersen commitment scheme)

Alice (prover) generates a random secret r.
Alice calculates a commitment C(r,a) = rH + aG.
Alice publishes commitment C(r,a). Value is stamped by Bob (verifier).
Then Alice reveals r’ and a’.
Bob computes C(r’,a’) = r’H + a’G, and verifies that C(r’,a’) = C(r,a).

1.
2.
3.
4.
5.
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FIGURE 1 - PEDERSEN COMMITMENT SCHEME

5.1.2 Pedersen commitment for the vector of values

Pedersen commitments can be used for hiding several values in the following way:

Each Gn, in this case, has to be formed using the NUMS approach.

Note 5. If the same group generator is being used to hide each an value, the scheme 
could be broken. Initially the attacker can provide commitment C(r, ā), where ā = 
[a1, a2]. Then they can provide a witness (r, ā’), where ā’ = [a1’, (a2+a1)-a1’] 
and it will be the correct witness for the verifier.

Note 6. Commitments for vectors can be used for more complex proofs (for example, 
for operations with vectors without their divulgence).
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FIGURE 2 - SCHNORR IDENTIFICATION PROTOCOL

5.1.3 Using Pedersen commitments in interactive schemes

The Schnorr Identification Scheme is one of the simplest interactive zero-knowledge 
proof schemes. Consideration of this scheme will help in the understanding of further 
approaches.

This scheme can be extended to create the commitment for several vectors via:
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The prover has a secret x. To ensure that they know the secret, the prover has 
to form a commitment P = xG.
P is sent to the verifier (like a public key).
Next, the prover generates a random value r and forms a new commitment:
R = rG.
R is sent to the verifier.
The verifier in turn generates a random scalar e and sends it to the prover.
Now the prover can compute s = r + ex.
s is being sent to the verifier.
Verifier can check that s*G = R + e*P.

1.

2.
3.

4.
5.
6.
7.
8.

The Pedersen commitment allows a large number of values to be committed (vector). 
In the context of the applicability of this property to the Schnorr identification scheme, 
the scheme will look like this:

FIGURE 3 - SCHNORR IDENTIFICATION PROTOCOL WITH PEDERSEN COMMITMENTS
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Prover sends C1, C2 … Cm to the verifier. In the future, they may prove that they 
know the set of secrets behind each Cm.

Prover sends C0 to the verifier.

Verifier sends e to prover; e - random scalar.
Prover sends to verifier z and s.

Verifier checks that

- a new commitment to random vector x of N dimension.

- vector of dimension N,

How this scheme works with the presence of interactivity [25]:

- scalar.

Prover generates a “knowledge argument” C1, C2 … Cm using secret vectors xm of 
the same dimension N.

1.

2.

3.

4.
5.

6.
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Note 7. The scheme described above is interactive. It requires the generation of the 
random value e, and in this case, it is generated by and received from a particular 
verifier. Therefore the proof for one verifier will not be true for another (no one can 
guarantee that the veri  fier is not in cahoots with the prover). A non-interactive scheme 
does not require direct communication between the verifier and the prover, so the 
verification of the commitment can be valid proof for everyone.

Note 8. A “knowledge argument” is a technical term distinguished from “proof of 
knowledge” by the idea that the proof is only computational – an adversary with enough 
computing power may be able to convince you that they know the secret value(s) even 
if they don’t.

Using Pedersen commitments, it is possible to achieve the following feature: we can 
prove that the sum of inputs and the sum of outputs are equal (in the case of the UTXO 
model).

But with using it in a raw form to make transactions confidential, this problem arises: 
the amounts (a values) can be negative, so a check for non-negativity is also needed. 
What is the best way to prove this without disclosure?

So there is a need for a method that allows us to prove that each a > 0.

To solve this, range proofs can be used. A Zero-knowledge range proof is a proof that 
allows us to verify that the secret is in a certain range without revealing it.

User A signature

User A signature

E = r1G+10H

F = r2G+2H

I = r3G+112H

J = r4G+(-100)H

Address C

Address D

Inputs Outputs

5.2 Range proofs
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Note 9. Nowadays, this problem is solved for O(n * log n), using the fast Fourier 
transform algorithm, but it is only used "for its intended purpose": to process signals, 
not to multiply numbers.

5.2.1 Applied math

Any number can be represented as a polynomial if x is replaced with the base of a 
numeral system:

Then the reduction of the number to the original form will be:

And the multiplication of two numbers represented in this form will be:

The base of the numeral system can be chosen arbitrarily.

The fastest known multiplication method was long multiplication, until 1960, when Andrei 
Kolmogorov and others proposed the "hypothesis of n2". It states: It’s impossible to 
multiply two n-digit numbers faster than in O(n2).

Later, Anatoly Karatsuba proposed a multiplication method with a time estimate O(nlog23) 
and disproved the hypothesis. Now this multiplication method can help us to make 
proof verification faster [26, 27].
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5.2.2  How Karatsuba’s method works.
With example

We have two polynomials have to be multiplied:

Polynomials must be represented in the following form (n = 2k):

This way polynomials multiplication is represented like:

Then we introduce the following notation:

Final multiplication will be represented like

2.

3.

4.

5.

If:

Then:

Example

1.
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5.2.3 Basis of range proofs

With example

Let’s imagine that we need to prove that 0 ≤ a < 2n.

Why we use 2n: This gives us the knowledge that if the statement is true, then the 
length of the binary form of a will be n bits [28].

For example, we have a = 5.

Using the above math, we get:

Every number can be represented as two 
vectors, so we represent a as:

The first vector is responsible for the binary representation of a.
The second vector is for degrees of 2.

We can also represent the initial secret in the form of two vectors:

-
-

Note 10. The simple commitment of this value will look like A = Com(a) = Com(a, a’) = 
a*B + a’B’, where a’ is a blinding factor for the value a; B and B’ are the generators used 
for the values and blinding factors.

where:

- binary form of a

- a vector consisting of powers of 2
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combining each of the two vector-
statements into a single statement

combining three statements into a single 
statement

z obtained from the verifier

then transformation to a from in with aL, 
aR, and the non-secret values are located 
separately

vector y generated by verifier

5.2.4 From a = <abinary, 2
n> to t(x) = <l(x), r(x)>.

The whole scheme of mathematical manipulation ultimately looks like this:
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Note 11. Below, the designation “*” will be used in the context of vectors. It means 
element-wise multiplication of vectors.

Note 12. It is very important to be sure that the values of the bit representation vector ā 
are either 1 or 0. The second expression is responsible for this, since the multiplication 
of inverted vectors from 0 and 1 in result provides a vector of zero values.

Note 13.The commitment of these vectors will look like

where G and H are vectors of generators, B’ is the generator used for blinding factors. 
a’ is a blinding factor for the value

To prove that our secret is in some interval, we need to prove the following two 
expressions:

We can define the following 2 vectors:

Then we move on to the following expressions:
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Then the challenge must be added to combine each of the two vector statements 
into a single statement. It will be added as a vector y generated by the verifier. So it is 
possible to modify the above expressions to this form:

Then it is possible to combine these three statements into one, using the new value z 
obtained from the verifier:

And then we just add

to each part of the equation:

Next, we need to make some transformations to bring our expression to a form in 
which aL, aR, and the non-secret values are located separately:

Note 14. Since b = 0 if and only if <b, y> = 0 (For example: <(1, 0, 1, 1, 1, 0),
(0, -1, 0, 0, 0, -1) * (1, 4, 2, 6, 4, 7)> = (0, 0, 0, 0, 0, 0)).
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Eventually, we can replace all the non-secret parts with:

The expression will  take the form:

Then we can designate:

Then we need to hide these unblinded values because this form does not allow us to 
send this data to the verifier without revealing a.

The prover selects vectors sL and sR, and then uses them to blind unblinded l(x) and 
unblinded r(x).

Let’s denote the unblinded parts:

So the blinded l(x) and r(x) will look like this:
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So we have

- this gives the understanding that a is in the interval from 0 to 2n.

Next, we need to get the product of our two blinded vectors. Vectors are multiplied, 
using Karatsuba’s method:

where:

Next, we need to prove that

and that t(x) is the correct polynomial.

Then the prover calculates

and

To do this, the prover forms a commitment to the coefficients of t(x) and then convinces 
the verifier that he knows t(x) by evaluating the polynomial at a challenge point x.

and sends A, T1, T2 to the verifier. The commitments A, T1, T2 are related to each other 
and to t(x) in this way:
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So, to convince the verifier that

the prover sends t(x) and t(x)’ to him. The verifier, in order to verify the validity of this 
equation, verifies:

The next step is to prove that l(x) and r(x) are correct [29].

After we understand how Pedersen commitments and range proofs work, we need to 
understand how it all fits together.

So we have an expression

and we can merge it with the Pedersen commitment this way:

5.3 Inner product proof
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Now we need to combine these equations, so to do this, we determine a new 
indeterminate variable w, orthogonal generator B, and multiply <a, b> by these values:

Then denote:

As a result:

We have:

Let’s change this expression a little:
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5.4 Inner product compression

We can benefit from the fact that the equation

is combined. We can use compression lg n times and make it look like we have just the 
scalar product of two vectors.

Let’s consider how scalar product compression can work on two vectors.
O(n) time and space would take a "non-compact proof," while a compact would take 
O(log(n)).

5.4.1  How inner product compression works.

With example

We have two polynomials have to be multiplied:1.

The simplest case when we have length a 
and b equal to 2.
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Then the prover gets a random scalar x from the verifier. It is needed to combine 
the hi and lo parts of a and b.. It allows for the creation of  
a’ and  b’ - more compact versions of a and b. And it also allows calculating
C’ = <a’,  b’>.

We can also represent C’ in another form, which is convenient for verification by 
the verifier.

The prover sends L and R to the verifier.

Then the same process repeats k = log(n) times to achieve maximum compactness 
of a’ and  b’, when its length is 1. Every next round prover uses a’, b’, c’ as a, b, c.

At the end, the prover just sends C’, a’ and b’ to the verifier.

2.

3.

4.

5.

6.

Denote:



28

Note 15. The described scheme is a simple example of how inner product compression 
works. In a real protocol we have the equation:

It is sent to the verifier, who responds with challenge x. So:

At the end, the prover sends values a and b to the verifier, and they verify that:

To make such a protocol non-interactive, the obtaining of the challenge x should be 
replaced with Fiat-Shamir challenge. It’s replaced by a transcript of L and R values.
At the end of all computations a, b, Lk, Rk,…, L1, R1 are sent to the verifier.
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5.4.2  Scheme of interaction between prover and verifier with inner 
product proof creating and verifying
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5.5 Summary

The most compact way of explaining the circuit was made by Cathie Yun, Henry de 
Valence, and Oleg Andreev. Many thanks to them for this scheme [31, 32]:

The main idea of the relation between prover and verifier functions:

6. ALGORITHMS
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6.1 Prover algorithm

Different types of proofs can be implemented:

The single proof generation we described above in section 5.

An aggregated proof implies that a proof is generated by more than one participant. 
It has the same size as a single proof, but its generation and verification is a bit more 
complicated. The essence of proof aggregation is to aggregate range proofs that take 
up a lot of space. The easiest way to create an aggregated proof is to use a mediator.

Then provers send Vi, Ai, Si to the mediator, who calculates:

The mediator adds A and S to the protocol transcript and obtains challenge scalars y, z 
from the transcript. Then the mediator sends y, z values to all participants.

Mediator’s algorithm

Let’s look at the generation of an aggregate proof with m participants:
Each of the participants generates 3 commitments:

Single proof
Aggregated proof

-
-

6.1.1 Single proof

6.1.2 Aggregated proof
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Each participant uses y, z as challenge and calculates:

That is, all participants themselves act as a source of “provable randomness”.

The mediator adds T1 and T2 to the protocol transcript, obtains a challenge x, and sends 
it to every participant.

Participants calculate the l(x) and r(x) using an obtained challenge x:

Then everything is calculated as in the above algorithm. As a result, each participant 
has two commitments - T1 and T2, which they send to the mediator, who  calculates:

Then each participant calculates synthetic blinding factors this way:



33

Participants send ti(x), ti’(x), ei’(x), li(x) and ri(x) to the mediator.

The mediator calculates:

Then mediator adds it to the protocol transcript and obtains challenge scalar w and 
uses it to calculate

The mediator concatenates li(x) and ri(x) and gets aggregated l(x) and r(x).

The mediator performs the inner product argument protocol to prove such relation:

The result of the inner product proof is a list of 2k points and 2 scalars, where
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The complete range proof consists of 9+2k 32 byte elements:

Consider verification of aggregated proof:

On the input verifier has

To verify such a proof, the verifier uses a Fiat-Shamir transform to obtain challenges:

Verifier obtains challenges y, z, then obtains x, and then obtains w.

This way there is no need to transmit challenges, because the verifier itself can calculate 
them [33, 34].

Then the verifier calculates x values that were used during inner product proof 
compression and calculates s values.

Then the verifier checks two equations:

where

6.2 Verifier algorithm
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To simplify calculation, the verifier combines the two equations into one:

The Offshift protocol enables coins (or assets) to be turned into hidden inputs (through a 
special smart contract), users to transfer commitments (without disclosing the amount), 
and inputs to be withdrawn through a contract (with a corresponding payment to the 
owner’s account).

In order to create shielded tokens (turn them into cryptographic commitments), the 
user needs to perform the following steps:

7. THE OFFSHIFT PROTOCOL

7.1 Commitment creation (Deposit)

Exchange token X for XFT (wherever they want);
Deposit XFT in the contract and define that they want to receive zkX. After 
funds are deposited they will be burned.
The contract receives a rate from the oracle and issues the corresponding 
amount of zkX to the user’s account.

1.
2.

3.
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In this model, users can own the list of commitments, whether received from deposit or 
incoming payment.

Also, users can form a kind of payment transaction. Such transactions contain: a set 
of unspent commitments, the account identifier of the recipient, and newly created 
commitments.

When a user wants to receive the unblinded tokens, they can withdraw them. In this 
case, the user “pays” to the contract (opens the commitment values) and the contract 
mints (issues) the appropriate amount of XFT tokens:

When a user wants to receive the unblinded tokens, they can withdraw them. In this 
case, the user “pays” to the contract (opens the commitment values) and the contract 
mints (issues) the appropriate amount of XFT tokens:

An additional feature is the ability to merge commitments among themselves - that is, 
the user can create a transaction for aggregating his own funds (regardless of their 
number) into one. After merging commitments, all payments to other accounts will be 
mixed - no one will be able to determine the actual amount of transfers and/or change.

8. FUNCTIONALITY OF A
SMART-CONTRACT AND ITS METHODS

7.2 Payments

7.3 Withdrawal

User locks zkX on a contract.
The contract receives data from the oracle and provides the corresponding 
amount of XFT (by current price).
Users can exchange XFT for token X.

1.
2.

3.
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9. FUTURE WORK & IMPLEMENTATIONS
We expect that future work will be related to the creation of decentralized applications 
on top of zero knowledge assets: exchanges, borrowing and lending, etc.

Another direction of improving the protocol will be an even greater level of privacy, 
which is associated not only with hiding the amount of transfers, but also with the 
sender and recipient of assets.

The transfer of the Offshift protocol to other infrastructures (for example, Moonbeam) 
for cross-platform, private asset transfers is upcoming as well.

To learn more and stay connected, join our Discord, GitLab, and check out our website 
at offshift.io.

https://discord.gg/rNyAgemGzA
https://open.offshift.io/offshiftXFT/protocol-main
https://www.offshift.io/
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APPENDIX A. NUMS

APPENDIX B. FIAT–SHAMIR HEURISTIC

This method enables the generation of verifiable random values. NUMS allows a prover 
to pick values in a way that demonstrates the values were not selected for a "nefarious 
purpose" - for example, to create a "backdoor" to the algorithm [35, 36].

Examples of using such algorithms are:

Application of this technique involves moving away from interactivity.

What makes bulletproofs so compact?

The length of vectors with each step is halved and then, in the base case, the length of 
a and b is 1.

How it works:

To make the proof non-interactive, it is necessary to replace the step of receiving a 
challenge from the verifier with another algorithm of proven random value generation. 
A hash of the prover’s messages can be a good replacement. The hash function is 
modeled as a random oracle (Random Oracle Model is a black box that outputs a 
random value even when the input is the same), which models the unpredictability of 
the verifier [37].

To generate random values, any of the described methods can be used.

One easy way is to use a hash function:

Use encoding G in binary, perhaps in compressed or uncompressed form, take the 
SHA256 of that binary string and check if it is the coordinate of an elliptic curve point. 
Not all the hashes will be the points on the curve, but half of them. So it may be a simple 
iterative algorithm (e.g. concat encoded G with 1, 2, 3...).

Ron Rivest used the trigonometric sine function to generate constants for the 
widely-used MD5 hash.
RFC 3526 describes prime numbers for internet key exchange that are also 
generated from π.
The key schedule of the RC5 cipher uses binary digits from both e and the golden 
ratio.
To generate values, elliptic curves also can be used.

-

-

-

-
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